Skip to main content

Please rec the new Mothership #45 here. This one has expired
The current ROV DIARY:Daily Kos Gulf Watchers ROV #185 - BP's Gulf Catastrophe - Gulf Watchers Overnight/peraspera

Rules of the Road

  • We take volunteers for subsequent diaries in the sub diaries or ROV's as we have playfully coined them.
  • Please rec this mothership diary, not the ROVs.
  • Please be kind to fellow kossacks who may have limited bandwidth and refrain from posting images or videos.

Wee Mama has been a professor of biochemistry at a Big Ten university since 1981. Her research focuses on the cytoskeleton. She has been a Fellow of the American Association for the Advancement of Science since 1994.

Wee Mama will be available to answer questions after 8:30 CDT.

We've all been looking on with horror as the oil gushes out in the gulf, like a black cloud spreading out and covering the sea. From some comments and diaries, it seems that many folks are confused about what exactly the oil is and how to think about what can and what cannot happen. This diary is offered as an introduction to the chemistry of carbon and how it interacts with other molecules. It will cover the carbon-carbon bond, the hydrogen bond and why oil and water don't mix, evaporation, aromatic hydrocarbons, how detergents like Corexit work, where hydrocarbons go, and a little bit about toxicity.

The carbon-carbon bond

All molecules are made up of atoms connected by chemical bonds. A chemical bond is a pair of electrons shared between two atoms. In a carbon-carbon bond, where two carbon atoms are part of a molecule, the electrons are shared equally between the two atoms. Hydrogen is fairly similar to carbon in its ability to hold onto electrons so a carbon-hyrdogen bond is also fairly equally balanced.

If we start to count up possible hydrocarbon molecules the simplest one is one carbon, C,  with all its bonds filled with hydrogen, H. This is methane,  CH4. The link to Wikipedia shows four ways to draw methane, a simple pyramid shaped molecule.

Each of these ways of drawing molecules is useful, but none of them is completely accurate. Starting at the top left picture, the diagram shows the atoms with single letters for the elements, C for carbon and H for hydrogen. It also shows the bond angles, the three-dimensional shape of the bonds between atoms. Moving clockwise, the picture called a ball and stick diagram is a way to preserve these geometric relationships. Black is conventionally used for carbon and white for hydrogen. Beneath the ball and stick diagram is one which takes more effort to show bond length as well as bond angles. Moving to the left is a diagram called a space filling diagram which comes the closest to showing how a methane molecule occupies space. It still shows the boundaries as hard surfaces, which is somewhat misleading because the electron clouds have some fuzziness to them. However, all four of these representations will be used again for other molecules and it is useful to keep in mind what they can (and cannot) show about molecular structure.

Methane, a small and light molecule that makes up natural gas, is the smallest saturated hydrocarbon. Two carbons together can make ethane, C2H6, and three can make propane, C3H8. So far, as you can see if you look at the wiki links, all of these compounds can only be put together in a single way. However, with four carbons, branched compounds start to be possible. Butane, C4H10, is the first of these compounds with more than one form or as we say isomer; butane has only two isomers, a straight ("normal") molecule and a symmetrical branched one.

Hydrocarbons can have many, many more carbons than butane. Octane has eight and is abundant in gasoline but a large range is possible. The larger the number of carbons, the more possible ways to put them together. Take a look at the isomers of octane; dodecane (12 carbons) has 355!

The hydrogen bond and why oil and water don't mix

Oil and water don't mix, but why? It goes back to the carbon-hydrogen bond. Carbon and hydrogen share their electrons fairly evenly, so the bond is symmetrical. Water on the other hand is made of hydrogen and oxygen, and oxygen is much better at holding onto the electrons than carbon is. The covalent bond in water is so uneven that it is called polar, with oxygen slightly negatively charged and hydrogen slightly positive. In a water molecule, the two hydrogens are at an angle so not only is each bond polar but the whole water molecule has a more positive and a more negative side.

Opposites attract (sometimes) and the partial positive of the hydrogens tends to stick to the partial negative of an oxygen in another molecule of water. This weak interaction is called a hydrogen bond. Each water molecule can make up to four H bonds, so liquid water is a constantly shifting mass of water molecules loosely bonded to other water molecules.

Hydrocarbons have nonpolar bonds. They can't H bond to water; they don't bond to each other. The result is that hydrocarbons don't interact with water much. They are left outside that shifting network of water molecules and end up hanging out with each other by default, rather like unsocial nerds at a prom, left in a corner by the cool kids but not really talking to each other either. This is called the hydrophobic effect. It's a bit of a misnomer: hydrocarbons don't fear water. They don't love water. They just aren't that into water.

Evaporation

Water as we meet it every day is a liquid - cohesive enough to have a fixed volume but loosely tied together so that it flows. Octane is a liquid, too. When a molecule of water or octane breaks loose from the other molecules in the liquid and flies off on its own as a gas molecule, we say it evaporates. One measure of how easy or hard it is for a molecule to evaporate is to look at its boiling point. Water boils at 100°C. Octane boils at 125°C but it is about eight times as heavy! It is that network of hydrogen bonds that holds water together so well.

All of the hydrocarbons lighter than octane boil at lower temperatures than water. Methane, almost identical in mass to water, boils at -161.6°C. We say that the simpler hydrocarbons are volatile; they easily evaporate and once in the atmosphere they remain there until they break down. Again, this is all due to the non-polar character of the carbon-hydrogen bond. A complete series is here. Notice that the really large hydrocarbons are solid at room temperature.

Aromatic hydrocarbons

So far we've talked about molecules that have a single bond connecting any two atoms. But suppose two atoms shared four electrons? We call that a double bond. Carbon and oxygen can form double bonds, but hydrogen can't. Saturated hydrocarbons have all single bonds, and are saturated with hydrogen. Hydrocarbons with some double bonds have fewer hydrogen atoms than the same number of carbons in a saturated one. A molecule can have just one double bond, like propene (the -ene ending is the clue that there is a double bond in the molecule). Having just one double bond doesn't make a lot of difference to how molecules behave. Having two, though, and especially having two separated by one single bond makes a big difference. We call such double bonds separated by a single bond conjugated bonds. In a linear molecule, they can make it absorb light much better than a similar saturated molecule.

Conjugated bonds get especially significant in a molecule that has closed onto itself to make a ring. Benzene, C6H6, is the classical example of these, a hexagonal ring where all the electrons are shared equally by all the carbons. With the right number of carbons we call these rings aromatic (many of the smaller one do have scents). The aromatic hydrocarbons are especially important for health reasons. Those hexagonal rings can slip in between the base pairs of DNA. When they do, there is a risk of offsetting the next round of DNA synthesis and causing a mutation. This is one of the ways in which aromatic hydrocarbons (but not simple hydrocarbons) can cause cancer. Some aromatic hydrocarbons common in petroleum include benzene, toluene and polycylic aromatic hydrocarbons (PAH) which have two or more rings fused into one molecule. These are especially good mimics of DNA base pairs (and may have helped life get started, oddly enough).

How detergents (like Corexit) work

Oil and water don't tend to mix (it takes the high pressure and low temperatures near the bottom to make methane clathrates, for instance). Detergents contain surfactants, molecules that can bridge the gap. Part of the surfactant will be hydrophobic (either saturated hydrocarbon or something else that doesn't mix with water) and part of it will include other atoms like oxygen. That part of the molecule will be polar or even charged, so it will interact with water. The nonpolar part of the molecule can stick its toe into the cluster of hydrophobic hydrocarbon. The end result is to allow water and oil to mix in small droplets called micelles. You see this in the kitchen. Shake up oil and vinegar; they separate almost immediately. Add a teaspoon of mustard and shake. Now the cloudy mixture (called an emulsion) remains mixed, because the mustard is acting as surfactant.

Corexit EC9500A, the dispersant being used in the gulf, has several components. The surfactant in it is butanedioic acid, 2-sulfo-, 1,4-bis(2-ethylhexyl) ester. Its ability to disperse oil is very similar to the way shampoo works. Its melting temperature is 153-157 °C so it cannot evaporate and it cannot enter the water cycle or come down as rain.

Where hydrocarbons go

Oil has a complicated mixture of hydrocarbons and different parts have different fates. The lightest molecules are volatile. When they evaporate they remain in the atmosphere until they oxidize from exposure to UV light and oxygen. Less volatile ones may remain in the water column until they are degraded by microorganisms or adsorb onto some solid particle and fall down. The largest molecules are left behind as these smaller ones are removed and can form tarballs, solid masses of asphaltenes, the large and sometimes aromatic molecules that are too large to evaporate and insoluble in water. The conjugated systems in unsaturated hydrocarbons make them more vulnerable to UV light. When microorganisms consume hydrocarbons they often use oxygen to metabolize the hydrocarbon so oxygen depletion may result.

A little bit about toxicity

There is a principle as old as the Greeks:

The dose makes the poison

My toxicologist friend put it more concretely:

Too much of anything - salt, sugar, water or mother love - will kill you

For all of the components of oil there is some level at which they are toxic. Toxicity can also vary with how long the exposure lasts. However the pattern of exposure is very variable and for many of the oil components, humans will not be exposed at those levels. In some cases not even organisms in the environment will be so exposed. Take for example methane. As a non-reactive gas, at certain levels methane can kill by taking up the volume occupied by oxygen. However these levels are not being seen, even in the immediate vicinity of the BP gusher. At the other end of the size scale, asphaltenes are non-toxic because they are solid at the temperatures at which we will handle them.

In the intermediate size range the toxicity of oil molecules will vary with their properties. The volatiles like propane and butane resemble methane; they would only harm if they displace oxygen and there is not enough of them to do that. The saturated hydrocarbons like hexane tend to have fairly low acute toxicity (though some can be a mild anesthetic when inhaled at high enough concentration). N-hexane has chronic effects at levels of ~500 ppm; these levels will almost certainly not be reached on a chronic basis from this spill because of their continuing evaporation and dispersal. Levels these high are seen in manufacturing settings where bulk solvents are used.

The aromatic hydrocarbons like benzene present specific risks. However benzene is a trace component of the oil that is flowing out, and we have multiple environmental exposures to benzene from other sources. Whether benzene from the gulf gusher will have actual health consequences is not clear yet, and won't be until we know more about concentrations and durations of exposure.

A more detailed discussion of oil toxicity is found in this link from the ROVs. The specific government limits are:

The EPA requires that spills or accidental releases into the environment of 10 pounds or more of benzene be reported to the EPA.

The Occupational Safety and Health Administration has set an exposure limit of 500 parts of petroleum distillates per million parts of air.

Yet more information is available through the National Library of Medicine.

Because this is a special diary, feel free to ask questions on this material in this mothership diary - direct other questions and comments to the current ROV.

Deepwater Horizon BP Oil Spill Reference Material - from Whitis is the best source for everything..   The quantitative data diary has also been moved there.

Kossak Sillia gives a concise explanation of the mothership and liveblog:

This diary, that is, the mothership, forms the hub from which you can reach the other diaries. Or, think of it as a table of contents in the front page of a book. You use this diary to find a link to the latest discussions. You can also find links here to past discussions (previous diaries) if you wanted to read them.

The actual liveblog diaries (in this case playfully referred to as a 'submersible' or ROV) is where the discussion is--once one of these gets so long that its size is cumbersome, they start a new one. So if you wanted to join in to the most current discussion, you'd click the most recent link. But they leave the links there so that people can still go back and read the older ones if they wish.

The reason for this setup is that it prevents the recommended list from being filled up with many diaries on the same topic. Instead just the mothership will appear on the rec list where everybody can find it, which they can use to navigate to the latest discussion. (That's why we are asked to "rec" the mothership but not the other diaries, just reduces confusion.)
I hope this is sort of what you were wanting to know...

Video Feeds
The best multi-view feed
BP Video Feed
CNN multi camera view
PBS This PBS feed is security compliant.
BP videos - Links to all available live feeds from BP
WKRG - Mobile/Pensacola (contains link for an iPhone app at the bottom)
ABC News
A multi-view with feeds from BP, C-SPAN-2, WKRG, and PBS
Vote For America's awesome clickable multi-view
Courtesy of Whitis, here are two additional video links:
Primary feed
Secondary feed

Liveblog diaries
Daily Kos Gulf Watchers ROV # 182 - BP's Gulf Catastrophe - Gulf Watchers Overnight/peraspera
Daily Kos Gulf Watchers ROV # 181 - BP's Gulf Catastrophe - Wee Mama
Daily Kos Gulf Watchers ROV # 180 - BP's Gulf Catastrophe - gchaucer2
Daily Kos Gulf Watchers ROV #179 - BP's Gulf Catastrophe - Yasuragi

Previous motherships and ROV's from this extensive live blog effort may be found here.



HTML 4.01

Originally posted to Gulf Watchers on Thu Jul 08, 2010 at 03:00 AM PDT.

EMAIL TO A FRIEND X
Your Email has been sent.
You must add at least one tag to this diary before publishing it.

Add keywords that describe this diary. Separate multiple keywords with commas.
Tagging tips - Search For Tags - Browse For Tags

?

More Tagging tips:

A tag is a way to search for this diary. If someone is searching for "Barack Obama," is this a diary they'd be trying to find?

Use a person's full name, without any title. Senator Obama may become President Obama, and Michelle Obama might run for office.

If your diary covers an election or elected official, use election tags, which are generally the state abbreviation followed by the office. CA-01 is the first district House seat. CA-Sen covers both senate races. NY-GOV covers the New York governor's race.

Tags do not compound: that is, "education reform" is a completely different tag from "education". A tag like "reform" alone is probably not meaningful.

Consider if one or more of these tags fits your diary: Civil Rights, Community, Congress, Culture, Economy, Education, Elections, Energy, Environment, Health Care, International, Labor, Law, Media, Meta, National Security, Science, Transportation, or White House. If your diary is specific to a state, consider adding the state (California, Texas, etc). Keep in mind, though, that there are many wonderful and important diaries that don't fit in any of these tags. Don't worry if yours doesn't.

You can add a private note to this diary when hotlisting it:
Are you sure you want to remove this diary from your hotlist?
Are you sure you want to remove your recommendation? You can only recommend a diary once, so you will not be able to re-recommend it afterwards.
Rescue this diary, and add a note:
Are you sure you want to remove this diary from Rescue?
Choose where to republish this diary. The diary will be added to the queue for that group. Publish it from the queue to make it appear.

You must be a member of a group to use this feature.

Add a quick update to your diary without changing the diary itself:
Are you sure you want to remove this diary?
(The diary will be removed from the site and returned to your drafts for further editing.)
(The diary will be removed.)
Are you sure you want to save these changes to the published diary?

Comment Preferences

skybluewater, N in Seattle, Kimberley, wozzle, JekyllnHyde, Angie in WA State, Joe Bob, rick, Donna Z, exsimo2, chrississippi, Garrett, northsylvania, CJB, Bill in Portland Maine, hester, SarahLee, Marie, laurak, CalifSherry, native, abarefootboy, Gooserock, Rolfyboy6, TrueBlueMajority, BigOkie, mattman, RunawayRose, krwada, Bill Melater, Fishgrease, Pescadero Bill, billlaurelMD, Jim W, mslat27, celdd, eeff, Mnemosyne, rubyr, elfling, TarheelDem, bethcf4p, Ahianne, mataliandy, jancw, Creosote, cinnamon68, cfm, Justina, bronte17, missLotus, conchita, cyberKosFan, BlackSheep1, rhp, Agathena, Morague, coffee cup, cosmic debris, greengrrl, roses, ovals49, peraspera, nargel, garbo, tdemko, ornerydad, mwmwm, splashy, CheckRaise, high uintas, wader, sviscusi, revsue, Tomtech, Oke, hhex65, psnyder, Moody Loner, Dallasdoc, pat bunny, 2laneIA, johanus, JimWilson, texasmom, ohiolibrarian, Steven Payne, lizah, mcfly, khowell, nika7k, Ottawa Guy, Catte Nappe, RebeccaG, lcrp, wordwraith, riverlover, Pohjola, zerelda, ybruti, side pocket, MrFrost, Kitsap River, mungley, Lefty Mama, KayCeSF, JayDean, poemworld, lyvwyr101, bablhous, sbg, valadon, AlwaysDemocrat, snowbird42, boran2, KingPing, Limelite, BDA in VA, Jersey Joe, Julie Gulden, Into The Woods, humphrey, maybeeso in michigan, bloomer 101, Bluesee, pacplate, marina, escapee, quinn, tle, greycat, blueyedace2, JanetT in MD, mjd in florida, Lying eyes, PBen, ElaineinIN, PsychoSavannah, offred, labwitchy, ccasas, DocGonzo, triciawyse, snacksandpop, Brooke In Seattle, yogishan, Kevskos, reflectionsv37, owlbear1, cfk, LNK, Pam from Calif, Frank Palmer, imfunnytoo, Jaime Frontero, EdlinUser, ladybug53, Burned, cassidy3, Overseas, sheddhead, Ice Blue, Phil S 33, CompaniaHill, blue jersey mom, coolbreeze, northanger, Lindy, DaveVH, JanL, JanF, Snud, justine, Land of Enchantment, noweasels, Jim P, reddbierd, SSMir, martini, third Party please, Knucklehead, SoniaS, tarheelblue, Patriot Daily News Clearinghouse, myboo, RustyBrown, 417els, Clytemnestra, edwardssl, Compost On The Weeds, tobendaro, dharmafarmer, mr crabby, Gorette, Dvalkure, koNko, martyc35, euterpe, Scientician, Audri, KenBee, Im with Rosey, dangangry, raincrow, sailmaker, birdbrain64, aepm, erratic, nonnie9999, gatorcog, Libby Shaw, imabluemerkin, Ordvefa, bleeding heart, sceptical observer, middleagedhousewife, llbear, Turbonerd, ilyana, profh, doingbusinessas, zeke7237, Clive all hat no horse Rodeo, RantNRaven, Dreaming of Better Days, blueoregon, kurt, revgerry, shaharazade, Statusquomustgo, Brunette, PhilW, thatvisionthing, Friend of the court, Hedwig, ms badger, mariachi mama, Pandoras Box, Thinking Fella, tegrat, Sapere aude, FoundingFatherDAR, dov12348, out of left field, lightfoot, bluicebank, BeninSC, zipn, anotherdemocrat, dotsright, donnamarie, uncomfortably numb, Cat Whisperer, tgypsy, bigjacbigjacbigjac, godislove, moosely2006, beth meacham, FishOutofWater, jeanette0605, hold tight, Jimdotz, joyful, aliasalias, Seneca Doane, jayden, steamkettle, klnb1019, netguyct, SeaTurtle, jnhobbs, millwood, gchaucer2, OIL GUY, cececville, Got a Grip, JML9999, Bikemom, vet, oxon, Empower Ink, gizmo59, rmonroe, acliff, jwinIL14, MKinTN, alkalinesky, revm3up, lisastar, JaxDem, Mr SeeMore, ChocolateChris, hulagirl, dotster, rontun, OleHippieChick, mamamedusa, geez53, Senor Unoball, Tchrldy, dbrown04, Involuntary Exile, bythesea, ozkid, elwior, Remembering Jello, binkaroni, John Barleycorn, lineatus, VL Baker, busymom, jamess, mikeconwell, happymisanthropy, geomoo, pickandshovel, exMnLiberal, TokenLiberal, MsWings, envwq, temptxan, moneysmith, glendaw271, petulans, winterbanyan, matching mole, bob zimway, doppler effect, BYw, ptolemynm, CindyMax, allie123, Quilldriver, CupofTea, ekyprogressive, In her own Voice, watercarrier4diogenes, shortgirl, SolarMom, Wordsinthewind, Purple Priestess, Wild Starchild, LaFeminista, maggiejean, 1BQ, Louisiana 1976, multilee, pileta, Florene, DontTaseMeBro, rsmpdx, tbird, snackdoodle, ALifeLessFrightening, dharmasyd, bsmechanic, Michael James, zephyr108, Carol in San Antonio, TheFern, be the change you seek, maryabein, Partisan Progressive, mcfair, SciVo, Patch Adam, mississippi boatrat, DefendOurConstitution, virginwoolf, petral, zaka1, allep10, blueocean, maxzj05, ArthurPoet, DaNang65, brushysage, jfromga, Dragon5616, xylem, Larsstephens, ozarkspark, BlueOak, Govinda, Amber6541, BigVegan, swaminathan, Christy1947, confitesprit, marabout40, David PA, patrickz, Vacationland, Tea and Strumpets, politik, marsanges, stunzeed, CS in AZ, angelajean, ColoradAnne, RJP9999, renzo capetti, puffmeister, melpomene1, cordgrass, gulfgal98, CayceP, sullivanst, Orbital Mind Control Lasers, juturna, Cure7802, JasperJohns, DerAmi, Lize in San Francisco, NYWheeler, Yasuragi, pateTX, melfunction, JRandomPoster, Funkygal, addisnana, rja, WedtoReason, elengul, Otteray Scribe, DirkFunk, Oh Mary Oh, Pakalolo, BrowniesAreGood, the girl, heart of a quince, twem, mama jo, I love OCD, nervousnellie, BardoOne, implicate order, thebluecrayon, MaryinHammondsport, Kharafina, Zenara, BlueJessamine, We Want Change, thinkmoss, DesignGuy, QuestionAuthority, BlueHead, Situational Lefty, GollyMissMolly, AnotherAmericanLie, mawazo, princesspat, Ebby, Jed Lewison, mrsgoo, marleycat, Lusty, Lorikeet, Jaygar, Claudius Bombarnac, Wheever, marigold, BarackStarObama, muddy boots, worldlotus, Empty Vessel, enhydra lutris, corvaire, aoeu, Tyto Alba, Aquagranny911, Archie2227, Anthony Page aka SecondComing, rscopes, StepLeftStepForward, DRo, Regina in a Sears Kit House, Reliefpitcher, Two cents from Derwood, jaebone, DawnN, delNorte, left over flower child, YaNevaNo, GrumpyOldGeek, Patric Juillet, ridemybike, dendron gnostic, Prairie D, sjterrid, CuriousBoston, ursoklevar, Hookah, OHknighty, Siri, Miep, S F Hippie, a2nite, Duino, congenitalefty, Darryl House, RonWelchjr, wdz, shanesnana, Mr Robert, Another Kevin, Meatier Brains

Subscribe or Donate to support Daily Kos.

Click here for the mobile view of the site