Skip to main content

NASA Helps See Buried Mars Flood Channels in 3-D

PASADENA, Calif. -- NASA's Mars Reconnaissance Orbiter has provided images allowing scientists for the first time to create a 3-D reconstruction of ancient water channels below the Martian surface.
The spacecraft took numerous images during the past few years that showed channels attributed to catastrophic flooding in the last 500 million years. During this period, Mars had been otherwise considered cold and dry. These channels are essential to understanding the extent to which recent hydrologic activity prevailed during such arid conditions. They also help scientists determine whether the floods could have induced episodes of climate change.

The estimated size of the flooding appears to be comparable to the ancient mega-flood that created the Channeled Scablands in the Pacific Northwest region of the United States, in eastern Washington.

Google Image Search: Channeled Scalands, which has nice pix of this geological feature. I provided the links to prevent this from being photo-heavy....and to evade the effort to make it photo-heavy. Please go see them.

Link to large pic of RADAR imaging

Abstract from Science Express

Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 Ma), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using the SHARAD sounding radar, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleo-hydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and extended an additional 180 kilometers to the east prior to the emplacement of the younger lava flows. We identify two stages of channel incision and determine that channel depths were more than twice that of previous estimates.
More from the NASA page
The channels lie in Elysium Planitia, an expanse of plains along the Martian equator and the youngest volcanic region on the planet. Extensive volcanism throughout the last several hundred million years covered most of the surface of Elysium Planitia, and this buried evidence of Mars' older geologic history, including the source and most of the length of the 620-mile-long (1000-kilometer-long) Marte Vallis channel system. To probe the length, width and depth of these underground channels, the researchers used the Mars Reconnaissance Orbiter's Shallow Radar (SHARAD).

Marte Vallis' morphology is similar to more ancient channel systems on Mars, especially those of the Chryse basin. Many scientists think the Chryse channels likely were formed by the catastrophic release of ground water, although others suggest lava can produce many of the same features. In comparison, little is known about Marte Vallis.

With the SHARAD radar, the team was able to map the buried channels in three dimensions with enough detail to see evidence suggesting two different phases of channel formation. One phase etched a series of smaller branching, or "anastomosing," channels that are now on a raised "bench" next to the main channel. These smaller channels flowed around four streamlined islands. A second phase carved the deep, wide channels.

"In this region, the radar picked up multiple 'reflectors,' which are surfaces or boundaries that reflect radio waves, so it was possible to see multiple layers, " said Lynn Carter, the paper's co-author from NASA's Goddard Space Flight Center in Greenbelt, Md. "We have rarely seen that in SHARAD data outside of the polar ice regions of Mars."

The mapping also provided sufficient information to establish the floods that carved the channels originated from a now-buried portion of the Cerberus Fossae fracture system. The water could have accumulated in an underground reservoir and been released by tectonic or volcanic activity.

I am most interested in the fact this 'catastrophic flooding' was occurring within the past 500 million years as opposed to being remnants of processes more than 2 billion years old.

That would seem to be reason to suspect there may still be underground water on Mars.....somewhere.

Originally posted to Toking Points Memo on Fri Mar 08, 2013 at 01:35 PM PST.

Also republished by Kossacks on Mars.

EMAIL TO A FRIEND X
Your Email has been sent.
You must add at least one tag to this diary before publishing it.

Add keywords that describe this diary. Separate multiple keywords with commas.
Tagging tips - Search For Tags - Browse For Tags

?

More Tagging tips:

A tag is a way to search for this diary. If someone is searching for "Barack Obama," is this a diary they'd be trying to find?

Use a person's full name, without any title. Senator Obama may become President Obama, and Michelle Obama might run for office.

If your diary covers an election or elected official, use election tags, which are generally the state abbreviation followed by the office. CA-01 is the first district House seat. CA-Sen covers both senate races. NY-GOV covers the New York governor's race.

Tags do not compound: that is, "education reform" is a completely different tag from "education". A tag like "reform" alone is probably not meaningful.

Consider if one or more of these tags fits your diary: Civil Rights, Community, Congress, Culture, Economy, Education, Elections, Energy, Environment, Health Care, International, Labor, Law, Media, Meta, National Security, Science, Transportation, or White House. If your diary is specific to a state, consider adding the state (California, Texas, etc). Keep in mind, though, that there are many wonderful and important diaries that don't fit in any of these tags. Don't worry if yours doesn't.

You can add a private note to this diary when hotlisting it:
Are you sure you want to remove this diary from your hotlist?
Are you sure you want to remove your recommendation? You can only recommend a diary once, so you will not be able to re-recommend it afterwards.
Rescue this diary, and add a note:
Are you sure you want to remove this diary from Rescue?
Choose where to republish this diary. The diary will be added to the queue for that group. Publish it from the queue to make it appear.

You must be a member of a group to use this feature.

Add a quick update to your diary without changing the diary itself:
Are you sure you want to remove this diary?
(The diary will be removed from the site and returned to your drafts for further editing.)
(The diary will be removed.)
Are you sure you want to save these changes to the published diary?

Comment Preferences

Subscribe or Donate to support Daily Kos.

Click here for the mobile view of the site